Properties of Regular Languages &4 197
Consider state go:
8(qo, 2) = qy - - (®

3(qo. b) = q3. But, g3 'belongs to group G; and the‘repr‘es'emat_ive of this
group is q;. So, instead of q; we can write q;. Therefore,

8(qo. b) =4, o)
Consider state q: : e

o 8(q1,) =q whxch is equal to q; since q; and qp are in the same group and qi is
. the representative of that group. So,

5(q1, a) =q o ' @) |

8(qi,b)=q4 S (H)
Consider the state qat | ’7

8(q4a a) = Q4 . (I)

8(qa, b) = qq ¢))

The iransition table for the transitions obtained from (E) to (J) are shown in the table 4.4
and the reduced DFA using the transition graph is shown in figure 4.5. Here, g4 is the
final state in reduced DFA since it is the final state in the given DFA.

«~Z—
d a b
R S
§ (4] qi QA‘
\ ’ Qs QA“
Table 4.4 Transition table

: . ' a ab
@

Fig. 4.5 Reduced DFA

198 Ed Finite Automata and Formal Languages

Exercises:

1. Show that the regular languages are closed under

a. Union b. Concatenation c. Star closure -

‘Show that the regular languages are closed under complementation
Show that the regular languages are closed under intersection
Show that the regular languages are closed under difference

What is homomorphism? Explain with example

Now s W

some languages which are not accepted by FA.

8. What is Pigeonhole principle?

9. State and prove Pumping Lemma

10. What is Pumping Lemma? Why it is used?
11. What are the applications of Pumping Lemma?

12. What is the general strategy used in Pumping Lemma for proving certain lang

are not regular?

13. Show that L = {wwh | w € (0+1)*} is not regular.
14. Show that L = {a"" | n > 0} is not regular.

15. Show that L= {a"'|n#1} is not regular.

16. Show that L = {a'’ | i > j} is not regular.

17. Show that L = {a"b'c™" | n,1 > 0} is not regular.

I8. Show that L = {a™ | n 2 0} is not regular.

19. Show that L = {a" | n is prime} is not regular.

20. Show that L = { w | ny(W) = np(w)} is not regular. Is L* regular"
21. Show that L = { w | ny(W) < np(w)} is not regular.
-22. Show that L = { wwlwe {a,b}* } is not regular.
23. Show that L = { (ab)"a* | n > k, k > 0} is not regular.
24. Show that L = { a" | n = k’ for k > 0} is not regular.

25. Show that L = {0" such that n is not a prime number} is not regular.

26. Show that L = {0"1"2" for n 2 0 } is not regular

Show that the regular languages are closed under homomorphism - '
What are the languages accepted by FA and what’arc not accepted by FA" Spemfy

u#ges

o " Context Free Grammars

What we will know after reading this chapter?

» Advantages of regular and non-regular languages
> Definition of Context Free Grammar (CFG)
To obtain CFGs for various types of context free languages
To check whether the given languages is CFG
~Leftmost derivation
Rightmost derivation
Derivation Tree(Parse tree)
~Yieldofatree -
Partial derivation tree
Ambiguous grammar
Solution to various problems of amblguous grammars
Inherently ambiguous grammar
Parsing
Simple grammar (S-Grammar)
To obtain S-Grammars for the specified languages
Applications of context free grammars
BNF notations with applications
Solution to more than 30 problems of various nature

VYVVVVVVVVVVVYVVYVY

, previous chapters we have seen that it is possible to construct FA to accept regular

In

languages. But, it is not possible to construct FA to accept non-regular languages. So, there
should be a machine to accept the non-regular languages also. A pushdown automaton can be
constructed to accept the non-regular languages and all regular languages. In this chapter we

concéhtrate on the definition of a context free grammar, how to obtain context free grammars,
how *\ language can be derived from the context free grammars and other important concepts. But,
in th subsequent chapters we concentrate on how to construct push down automaton and how it
can constructed to accept context free language.

200 & Finite Automata and Formal Languages -

5.1 Advantages of regular and non-regular languages

The langg:ge ebtamed from regular grammar is called regular language. Using regular languages
we can descrlbe some patterns very effectively such as recognition of identifiers,: numnbers,
identifieation of comments in a program etc. But, the non-regular languages cannot be despnbed
using regular grammar which is the limitation of the grammar. ‘ : i

. The nomregular languages are very important in programming languages so as to nlentlfy
the matching parentheses, to match the nested if statements, whether a statement is syntactically
correct or not and so on. So, apart from regular laiiguages, Aon-regular languages also play a very
important role in programming Ianguages and the language translators such as interpretets and
compilers. So, in this chapter let us discuss and study the way to represent a comext free g
using which we obtam some of the non-regular languages '

5.2 Context free grammars

production may contain zero or-more termmals Ifa non-temnnal (vanable) is present, that non-
termmal should be the left most symbol or the right most symbol But, in a context free gn

non-terminal but, there is no restriction on the right hand side of the production. Any nuraber of
non-terminals and terminals may be present (mcludmg €). Formally, the context free gramms
deﬁned as follows. . '

Definition: A grammar G is a quadruple (having four components) G =(V, T, P, S) where:
» Vs set of variables or non-terminals
» Tis set of terminals -
= Pis set of productions
® - Sis the start symbol

is said to be type 2 grammar or context free grammar (CFG) if all the productions are of the l’orm
ASa ' ;

where 0. € (VUT) and A € V. The symbol € (indicating. NULL strmg) can appear on the right
hand side of any productlon

Note: Some of the observations made in this definition are:
1. There is only one symbol A on the left hand side of the productlon and that symb(ﬂ must
be a non-terminal
2. o € (VUT) implies that right hand side of the string may contain any nurrﬂ:r:r of
terminals and non-tenmnals including € (NULL string).

The language generated from this grammar is called type 2 language or context free langvuage
(CFL). For example, the following grammar is a context free grammar:

Context Free Grammars = 201

S — aBaa|bAle
A o aA|bAA
B — BbB|ale

Every xegular grammar is a CFG and hence a regular language is also context free language but
the rgverse is not true always. Basically, regular grammar is subset of context free grammar and
regular language is subset of context free language. Some of the context free languages are

disc below.
Example5.1: LetG=(V,T,P.S) bea CFG where |
V={S}
T={a, b}
P={
| S — aSa|bSb|e
? S is the start symbol.

Whit is the language generated by this gkarnmar?

The Eﬁll string € can be obtained by applying the production S — € and the derivation is shown
below: , ' o

03

: S=> ¢ (By applying S — €)
[. ’ .
Consider the derivation
S=aSa * (By applying S — aSa)

=> abSba (By applying S — bSb)
=> abbSbba (By applying S — bSb)
=> abbbSbbba (By applying S — bSb)
=> abbbbbba (By applying S — ¢)

So, bylapplying the productions

S — aSaand S — bSb

any l*lmber of times and in any order and finally applying the production

S—e

gra

L={ww!|we {a+b}*}

202 HE Finite Automata and Formal Languages

As this language is generated from the context free grammar, this is context free language. We
saw in chapter 4 that this language is not regular and FA can not be constructed for this. -

Exainple §.2: Show that the language L = {a™b"| m #n } is context free.

If it is possible to construct a CFG to generate the given language then we say that the langilage is
context free. Let us construct the CFG for the language defined. It is clear from the given
language that m number of a’s are followed by # number of b's and number of a’s'and b’s ’&e not
equal As a first attempt we can have the producnon

S—aSb

using which' n number of a’s are followed by one S followed by n number of b’s are generated
Now, if we replace the non terminal S by the production

»

S—»e

we get n number of a’s followed by n number of b’s. But, we should see that number of als and
b’s are different. So, we should be in a position to generate either ohe or more extra a’sor one or
more extra b’s. Hence, instead of the production ‘ B

S— ¢

we can have the productions
"S— A|B

From the non-terminal A we can generate one or more a’s and from non-terminal B \Vp can
generate one or more b’s as shown below: S

A — aAla) R
B — bB|b ‘ : :
So, the context free grammar G = (V, T, P, S) where ' L i
’ . V = {S,S A B}
V = {S,A B} T = {ab)
T = {a,b} P = {
P.o={ s' S|s
'S - aSh|A|B OR s - :Sbl|q
S is the start symbol : g! i}s the start symbol ’

generates the language L = { a™" | m # n }. Note that both the grammars specified generate the
same language L. Since a CFG exists for the language, the language is context free. !

Example 5.3: Obtain a CFG to generate a language consisting of equal number of a’s and b: s.

Neote: The solution is already provided in 1.34. It can also be solved using the following grammar.

Context Free Grammars & 203
The Fbove language can also be represented as
L= {W | we {a’ b}* n,(w) “b(w)}

" The eontext free grammarG (V T P, S) where

V = {S,A B}
T = {a,b}
S — aBjbA
A — aS|bAAja
, B - bS|aBB|b
}
S isthestartsymbol

1

generates the language consrstmg of equal number of a’s and b’s.
Exehple 54: Obtain aCFG on{a, b}togeneutea language L = { a"wwb" | we X *, n21}

This is similar to the problem shown in example 5.1 which can generate the string ww". But, in
this case the string ww® must be enclosed between a and b" where n > 1. The final grammar is -

V={S}
T = {a, b}
P={
‘ S — aSb|aAb
| A — aAa|bAb|e
' }

S is the start symbol.

It is{left to the reader to verify whether the required language is generated by thxs or not. Show the
derivation for the string which can generate the required language.

Ex;r’:ple 5.5: Obtain a context free grammar to generate properly nested paremhem structures

invalving three kinds of parentheses (), [Jand {}. .

Thn* is similar to the problem a"b" where a is replaced by left parentheses and b is replaced by
nght parentheses with little bit of modification. The complete grammar is shown below:
|

. V={S})
| T=(GC)LL {1
P= |

b
S is the start symbol

S"*SSI(S)HS]I{SHE

204 K Finite Automata and Formal Languages

It is left to the reader to verify whether the required language is generated by this or not. Shew the
denvauon for the string which can generate the required language.

Example 5.6: Obtain a context free grammar to generate the following language
L ={w | we {a, b}*, ni(v) 2 ny(v) where v is any preﬁx of w}

This is similar to the previous problem where ‘(‘ is replaced by a and ‘)" is replaced by b w1th
little bit of modlﬁcauon The complete grammar is shown below:

V={S}

T = {a. b}
P={

S— SS|aSb|e

}
Sis the start symbol.

It is left to the reader to verify whether the required language is generated from the above
grammar or not. Show the derivation for the string which can generate the required language,

Exampie 5.7: Obhlnammﬁeegmnmrtogenmtemefouowinglanguage g
L= {01(1100)"110(10)"|n20} | -

The complete grammar is shown below:

S— 0l1A »
A — 1100A10| 110 :

} | | | :
- S is the start symbol. ' '

It is left to the reader to verify whether the required language is generated by this or not. Show the
derivation for the string which can generate the required language. =

Example 5.8: Is the following language Context free? | u
L={a"b"|n>0) S S

If it is context free language, it should be generated by the context free grammar. Con51der the
context free grammar shown below: :

V={S},T={ab)
P={

S— aSb|e
}

Context Free Grammars & 205

and § is the start symbol. It is evident from the above -grammar that the language generated by
this grammar is a"b" | n = 0. The reader should show the derivation to generate a string w € L. -
Since;g.this grammar generates the language specified, the language is context free. '

Ex’lk;ple 5.9: Obtain a context free grammar to generate the following language
L ={a"b™ m>nandn >0}

It is|similar to the previous problem, except that it has more number of b’s following a’s. The
complete grammar is shown below:

, V={S,B}
. T={a, b}
P= |
, S— aSb|B
B— bB|b
}
S is the start symbol.

Itis tcft to the reader to verify whether the required language is generated by this or not. Show the
derivation for the string which can. generate the requnred language

Example 5. 10 Obtain a CFG to generate unequal number-of a’s and b’s
The ve language can also be represented as

|
B L={w]|we {a,b}", n(w) # ny(w)}

[A is the start symbol of G, and B is the start symbol of G,, then these two grammars can be
bined into a single CFG G which accepts both-the languages using the production

S—>A|B ‘ (5.1)

Firs{ ‘we shall see how to obtain GI which accepts more a’s than b’s. The language can be
recursively defined as follows:

1. The symbol ‘a’ has more a’s than b’s
2. If X has more number of a’s than b’s then Xa and aX deﬁmtely contain more a’s
than b’s. :

The production corresponding to these two definitions can be written as

A—>alaA 5.2)

The above productlon contains only a’s and do not contain any b’s. We should add b’s so that
number of a’s remain more than number of b’s. This can be aclueved by adding symbol ‘b’ to the -

206 M Finite Automata and Formal Languages

left or middle or to right of two elements X and Y. € L, which is the language correspondmg to
the grammar G,. The resulting productions using this definition are

A — bAA | AbA | AADb (5. 3)‘

So, the grammar G, to produce more a’s than b’s can be obtained by combmmg the produchons
obtained in (5.2) and (5.3) as shown below: !

'A->a|AajaA |bAA|AbA|AAb (5.4}
On similar lines, we can write a grammar G, to produce more b’s than a’s as shown below:
B -»>b|bB|aBB | BaB | BBa 5.5)

So, the final grammar G to generate unequal number of a’s and b’s can be obtained by comb{ning
the productions obtained in (5.1), (5.4) and (5 5) as shown below. The grammar G = (V T, . S)
where

V = {S,AB} ‘
T = ({ab} o
P = { ‘
S — A|B | .
A — a|aA|bAA|ADA|AAb
B — b|bB|aBB|BaB|BBa
S is the start symbol

produces unequal number of a’s and b’s

Example 5.11: For the regular expression (011+1)*(01)* obtain the context free grammar. * '
The regular expression (011 + 1)*(01)* is of the form A*B* where A can be 011 or 1 and Bis 01.
The regular expression A*B* means that any number of A’s (possibly none) are followed bﬁ any
number of B’s(possibly none). Any number of A’s (i.e, O11’s or 1’s) can be generated usmg the

productions
A—>0ll1A|1A|e

Any number of B’s (i.e., 01’s) can be generated using the productions
B—0IB|¢e

Now, the language generated from the regular expression (011 + 1)*(01)* can be obtamad by
concatenating A and B using the production

S->AB
So, the final grammar is G = (V, T, P, S) where

Context Free Grammars & 207

V = [(S§,A B}
T = {0,1}
P = { :
S — AB
A - 0ll1A]1A]e
B — 0IBje
}
S is the start symbol

Exar:?SJZi Obtain a grammar to generate an arithmetic expression using the operators +, -, *,/

and “(indicating power). An identifier can start with any of the letters from {a, b, ¢} and can be

followed by zero or more symbols from {a, b, c}

An aritlimetic expression can be recursively defined as follows:
.. L. Anexpression E can be an identifier

| 2. IfEis any arithmetic expression then

? i. E+E

: ii. E-E

, iii. E*E

| . iv. E/E

3 v. E7E

o vi. (E)

: are all arithmetic expressions.

b)

An identifier I of length at least one can be generated using any combinations of a’s,b’s and ¢’s

using the following productions

v I — Ia|lb|Ic|a|b]|c

By first beﬁnition of an arithmetic expression I is an arithmetic expression which can be obtained
using the production - : '
: T

L E — I
By the s@cond definition of an arithmetic expression' the various productions that can be obtained
are: | ' : -
— E+E
- E-E
— E*E
— E/E
— E*E
— (E)

ot mmm

+

So, the complete grammar to generate an arithmetic expression is given by G = (V, T, P, S)
where

208 & Finite Automata and Formal Languages

{E1}
{+s “y *9 /9 A9 a, ba c}

{

~3
o

1 ;
E+E
E-E

E*E -

E/E

» EAE

E -
la|lb|Ic|a]b]|c

'—mmmmt;nvnim
blilill

}
S is the start symbol’

The productions in P can also be written as shown below:
E -1)
E — E+E| E-E|E*E|E/E|E~E|(E)
I — Ia|Ib]jIc|a]b]c

53 Leftmost derivation

The section 1.16 gives the information with respect to derivation. The derivation g;:ce’ss is
shown in example 1.26. The reader is advised to refer this section before proceeding further. The
derivation process is repeated for the sake of convenience in this section. » '

Example 5.13: Consider the grammar shown below from which any arithmetic expression can be

obtained. : i
E+E : : 1

E-E ‘ : _ o

E*E Note: The symbol # denotes exponentiation.

E/E . x

EAE '

trs & ot e
A A

id : ‘
, S

The non-terminal E is used instead of using the word expression. The left-hand side of the first

production i.e., E is considered to be the start symbol. Obtain the string id + id * id and khow the

derivation for the same. .
Solution: The derivation to get the string id + id * id is shown below.

E —= E+E
im

= id+E

= id+E*E
= id+id*E
. = id+id *id
" Note that at each step in the derivation process, only the left most variable E is replaced and so
the derivation is said to be leftmost. The string id + id * id is obtained from the start symbol E by
applying leftmost derivation and can be written as '

Context Free Grammars = 209

+
E = id +id * id

indiéaTing the string id + id * id is derived from E by applying more than one production. The

*

+
I ?denotes that one or more steps are used in the derivation where as the symbol =
Cim R . m

that zero or more steps are used in the derivation. Thus, the leftmost derivation can be
| as follows:

<

Definition: In the derivation process if a left most variable is replaced at every step, then the
derivation is said to be leftmost and is shown in example 5.13. It is clear from leftmost derivation
that each of the following: :

% {ELE+E,id+E,id+E*E,id +id *E,id +id *id }

can be obtained from the start symbol. Each string in the set is called the sentential form. The
formal definition of sentential form is shown below:

: n: Let G = (V, T, P, S) be a CFG. Any string w € (V uT)* which is derivable from the

start s ‘ bol S (denoted by S = a) iscalled a sentehce or sentential form of G. If there is a

variable i

S — aB|bA
A — aS|bAAl|a
B — bS|aBB|b

The leftmost derivation for the string aaabbabbba is shown below:

'S _l_':'; aB (Applying S — aB)
= aaBB (Applying B — aBB)
= aaaBBB (Applying B — aBB)
=> aaabBB (Applying B -5 b)
= aaabbB ~ (Applying B — b)
= aaabbaBB (Applying B — aBB)

= aaabbabB (Applying B = b)

=> aaabbabb$S - (Applying B — bS)

= aaabbabbbA (Applying S — bA)
=> aaabbabbba (Applving A— a)

210 B Finite Automata and Formal Languages

54 Rightmost derivation

Definition: In the derivation process if a rlght most variable is replaced at every step, { hen the
denvatlon is said to be rightmost. ; i

The rightmost derivation for the grammar shown in example 5.13 is shown below.

E — E+E o g
— E+E*E |
= E+E*id ~ ' i
= E+id*id

= id+id *id

Note that at each step in the derivation process, only the right most variable E is replaced ; and o)
the derivation is said to be right most. The string id + id * id is obtained from the start symbol E
by applying right most denvanon and can be written as -

E :> id +id * id

5.5 Derivation Tree (Parse tree) .
o

The derivation can be shown in the form of a tree. Such trees are called derivation or parse trees.
The leftmost derivation as well as the right most derivation can be represented using deﬁvatlon
trees. The derivation tree can be defined as shown below.

Definition (Parse tree or Derivation Tree): Let G = (V, T, P, S) be a CFG. The tree is
denvauon tree (parse tree) with the following propertles ;
1. The root has the label S. b
2. Every vertex has a label which is in (VUTUg¢). .
- 3. Every leaf node has label from T and an interior vertex has a label from V.
4. If a vertex is labeled A and if X;. X, X3; X, are all children of A from left,
then A — X;X:Xj....X,must be a producnon inP.

The parse tree for the right most derivation shown in section 5.5 is shown in figure 5.1

/;\

E

: l'/i \

id ld

Fig.5.1 Derivation tree

E - Context Free Grammars & 211

In nt_t)above derivation tree, let us read only the leaf nodes from left to right (Ieavihg the €-
symbols if any). The string obtained is : ' ‘
id +id*id

!

is cz;lled the yield of the tree. Thus, the yield of a tree can be formally defined as follows:

Dedpition: The yield of a tree is the string of symbols obtained by only reading the leaves of the
tree! from left to right without considering the g-symbols. The yield of the tree is derived always
frorpthe root and the yield of the tree is always a terminal string.

| — '
For lexample, consider the derivation tree (or parse tree) shown below:

SN
E + E
: ’i/ PN

id id

If we read only the-terminal symbols in this tree from left to right we get id + id * id and is the
yjeld of the given parse tree. The partial parse tree(partial derivation tree) is defined as follows.

De‘hlition (Partial Parse tree or Partial Derivation Tree):

Lett G = (V, T, P, S) be a CFG. The tree is partial derivation tree (parse trec) with the following

properties. :
1. Theroot has the label S.

2. Every vertex has a label which is in (VU TuUe).

3. Every leaf node has label from (VU TU €).

4. If a vertex is labeled A and if X;, X3, Xs, X, are all children of A from left,
then A = X, X;X;....X, must be a production in P. '

me?nioned». ' :

' Coi\sider the panial derivation (by applying right most derivation) for the grammar

Noité: The difference between parse tree and vpartial parse tree is same except in the propérty 3

E—E+E|E*E|id
is#hownbefow ’ ‘
"E = E+E

= E+E*E
= E+E*id

212 & Finite Automata and Formal Languages

For this partial right inost derivation, the partial derivation tree is shown below: It

<IN\

E }- E
& \f

- id ' e

|
It is clear from the parse tree and partial parse tree that all the leaves in parse tree are the

symbols from (T U €) whereas in partial parse tree the leaves will be from (V U T U g).

5.6 Ambiguous grammar

Definition: Let G = (V, T, P, S) be a context free grammar. A grammar G is ambiguous if and
only if there exists at least one string w € T* for which two or more different parse trees exist by.
applying either the left most derivation or right most derivation. Note that after applying leftmost
derivation or right most derivation even though the derivations look different and if the structure
of parse trees obtained are same, we can not jump to the conclusion that the grammar is
ambiguous. It is not the multiplicity of the derivations that cause ambiguity. But, it is the
existence of two or more parse trees for the same string w derived from the root labeled S. ‘

Note:

1. Obtain the leftmost derivation and get a string w. Obtain the right most derivation and get a
string w. For both the derivations construct the parse tree. If there are two different parse
trees, then the grammar is ambiguous. I

2. Obtain the string w by applying leftmost derivation twice and construct.the parse tree. If'the

_two parse trees are different, the grammar is ambiguous. C "

3. Obtain the string w by applying rightmost derivation twice and construct the parse tree. If the
two parse trees are different, the grammar is ambiguous. |

4. Apply the leftmost derivation and a get string. Apply the leftmost derivation again and a geta
different string. The parse trees obtained will naturally be different and do not come to the
conclusion that the grammar is ambiguous.

. Example 5.15: Consider the grammar shown below from which any arithmetic expression cad be
obtained. : ,) ¥

E — E+E ‘ .)
E. » E-E g
E — E*E ' i

E - E/E

E - (B)|I

1T —id

Show that the grammar is ambiguous.

Sing
deri

Context Free Grammars & 213

Note: Leftmost derivation, rightmost derivation and parse trees are equivalent.

The sentence id + id * id can be obtained from leftmost derivation in two ways as shown below.

E = E+E . E = E*E
= id+E = E+E*E
= id+E*E = id+E*E
= id+id *E ' = id+id *E
= id+id *id = id+id *id

The corresponding derivation trees for the two leftmost derivations are shown in figure 5.2.

SN <IN

E + ‘E
1 Fi/g\s f/l\

id id id id
fig.5.2 Derivation trees for Leftmost derivation

te the two parse trees are different for the same sentence id + id * id by applying leftmost
Vation the grammar is ambiguous. ’

Exqmple 5.16: Is the following grammar ambiguous?

S — aS|X
X — aX|a

Coﬁsider the two leftmost derivations for the string aaaa.

I
|
|

S = aS S =X
= aaS = aX
- => aaaS . = aaX
- aaaX ’ — aaaX
= aaaa = aaaa

inr there are two leftmost derivations for the same sentence aaaa, thc given grammar | is
g .

uous.

Example 5.17: Is the following grammar amblguous"

!

S — aB|bA
A — aS|bAA|a
B — bS|aBB|b

Solution: Consider the leftmost derivation and the corresponding pares tree shown below:

214 M Finite Automata and Formal Langﬁages

S = aB (Applying S — aB)
= aaBB (Applying B — aBB)
= aabSB (Applying B — bS)
= aabbAB (Applying S — bA)
= aabbaB (Applying A — a)
= aabbab (Applying B > b)

/\
/l\
/\ |
/\
i

a

The Same string aabbab can be obtained again by applying leftmost derivation as shown below:

S = aB (Applying S — aB)
= aaBB (Applying B — aBB)
= aabB (ApplyingB — b)
= aabbS (ApplyingB — bS)
= aabbaB (Applying S — aB)
= aabbab (ApplyingB —b)

/\

/I\
/\

|
b

/\’

|
i
!

' Context Free Grammars & 215
Note tlhat there are two parse trees for the string aabbab by applying leftmost derivation and so
the gi?en grammar is ambiguous. ’
Examble 5.18: Obtain the string aaabbabbba by applying left most derivation and the parse tree
for the grammar shown below. Is it possible to obtain the same string again by applying leftmost
derivation but by selecting different productions? ' ,

i R

S — aB|bA
A — aS|bAA]a
B — bS|aBB|b

3
H

The leftmost derivation for the string aaabbabbba is shown below:

aB | (Applying S — aB)

S =
= aaBB ' (Applying B — aBB)
= aaaBBB (Applying B — aBB)
= aaabBB v (Applying B —'b)
= aaabbB (Applying B — b)
= aaabbaBB (Applying B — aBB)
= aaabbabB (ApplyingB —b)
| => aaabbabb$ (Applying B — bS)
i = aaabbabbbA (Applying S — bA)
i, —> aaabbabbba (Applying A— a)

The [?arse tree for the above derivation is shown in figure 5.3.
. s .
/N
E a ‘ B » ,
oINS T,
| /
b

N
. | b/ N\,

a

fig.5.3 Derivation tree for Leftmost derivation

216 E Finite Automata and Fonﬁal Languages

The leftmost derivation for the same string aaabbabbba but by applying. different- SCt of
productions is shown below:

S = aB ~ (Applying S — aB)
— aaBB (Applying B — aBB) ?
= aaaBBB (Applying B — aBB) ' ’
= aaabSBB (Applying B — bS)
= aaabbABB (Applying S — bA) 5
= aaabbaBB (Applying A —> a) |
=> aaabbabB (Applying B — b) ?
= aaabbabb$ (Applying B — bS)
=> aaabbabbbA (Applying S — bA) i
= aaabbabbba (Applying A— a)

The parse tree for this derivation is shown in figure 5.4. , ‘

N
A~ °
N N

B

A /\ -
/\ |]

l a
a
fig.5.4 Derivation tree for Leftmost derivation

Example 5.19: Is the following grammar ambiguous?

" S — iCtS|iCtSeS|a
C —- b

The string ibtibtaea can be obtained by applying the leftmost derivation as shown below:

Context Free Grammars & 217

iCtS
ibtS
ibtiCtSeS
ibtibtSeS
ibtibtaeS
ibtibtaca

BULUUUY

The parse tree for this is shown below:

The

i
i

/ l\t\
| /| \\T\T

|,
b - a o a

string ibtibtaea can be obtained again'by applying the leftmost derivation but using different

sets of productions as shown below:

The

iCtSeS
ibtSeS
ibtiCtSeS
ibtibtSeS
ibtibtaeS
ibtibtaca

'S

NI T

parse tree for this is shown below:

/|\\

2

b |.a

|
b a

Since there are two different parse trees for the string ‘ibtibtaea’ by applying. leftmost derivation
the given grammar is ambiguous.

218 H Finite Automata and Formal Languages

Example 5.20: Is the grammar ambiguous?

S — AB|aaB
A — alAa
B —=b

Consider the left most derivation for the string aab and the corresponding pares tree

: - S ‘
g PN
= aaB A B
= aab ' /\ I
A a b

a

Consider the left most derivation again for the string aab but using different set of productions
along with the parse tree ' |

S = aaB S
= aab /l\ : i
o a a B

|

. b

Since there are two parse trees for the string aab, the given grammar is ambiguous.

Example 5.21: Show that tﬁ following grammar is ambiguous

S — aSbS
S — bSaS
S — ¢ v
Consider the leftmost derivation for the string aababb and the corresponding parse tree
S = aSbs by using S— aSbS S
= aaSbSbS by using S— aSbS / \\ ,
= aabSaSbSbS by using S— bSaS a S b S ;
= aabaSbSbS by using S— ¢ / \\\ |
=> aababSbS by using S— €
=
-

aababb$S by using S— € a S b 'S \ €
aababb by using S— € / \\\)
t]

m
-~

